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The Tree of Life

The first phylogenetic tree of life, Ernst Haeckel (1866)
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The Tree of Life

A modern view of the tree of life
4

                             

                       Daniel Huson, 1998



Jukes-Cantor Model of Evolution

• Given a model tree T , with edge weights

P (e)

• Interpret P (e) as the probability of change

at any given position in a sequence along

the edge e, (i.i.d. model)

• Fix a sequence length k. Choose a root r

and a random start sequence S at r

• Evolve sequences along the tree T , Markov

tree.

5

                             

                       Daniel Huson, 1998



Tree Reconstruction Methods

• Maximum Parsimony

– Popular sequence-based method

– Solve the Hamming distance Steiner tree prob-
lem to obtain the most parsimonious tree. (NP-
hard)

• Neighbor-Joining

– Popular distance-based method

– Successively ”join” close pairs of taxa to infer
tree. (fast)

• Buneman Tree

– Distance-based method with nice mathemati-
cal properties (low resolution)
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Maximum Parsimony

Find tree that explains data using a minimal

number of mutations.

• For a given tree, find an optimal labeling

(easy, using Fitch’s algorithm)

• Look at all possible trees on given se-

quences, e.g. using branch-and-bound

• Use heuristics such as branch-swapping
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Objective: Topological Accuracy

The main goal in biology is to correctly in-

fer the order of speciation events, hence the

objective is to minimize:

• False positives: wrongly inferred edges

• False negatives: missing edges

Model tree T :

Estimation M(T ):

One false positive: {S1, S3} vs. {S2, S4, S5}
One false negative: {S1, S2} vs. {S3, S4, S5}
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Experimental Simulation Studies

• Choose model tree T (e.g. inspired by bi-
ology)

• Choose model of evolution

Jukes-Cantor model:

– Markov model

– Four state character sequences

– edges have substitution probabilities p(e)

– Root sequence drawn from uniform distribution

• Evolve sequences along the model tree

• Apply tree reconstruction method M to
evolved sequences

• Compare estimation M(T ) with model tree
T

(ecat, PAUP, Phylip. Our programs in C++, LEDA.)
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Comparison of False Positive Rates

• sequence length vs. false positive rate

• 93 taxon tree (from 500 taxon rbcL dataset)

• maximum substitution probability p(e) is 0.48

• 20 experiments per point
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Comparison of False Negative Rates

• sequence length vs. false negative rate

• 93 taxon tree (from 500 taxon rbcL dataset)

• maximum substitution probability p(e) is 0.48

• 20 experiments per point
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Performance of Neighbor-Joining

• 93 taxon tree (from 500 taxon rbcL dataset)

• maximum mutation probability p(e) vs. FP (=FN)
rate

• 20 experiments per point
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Big Trees are Hard to Infer

• Distance-based methods (e.g. neighbor-
joining, 3-approximation, Buneman tree,
split decomposition) are fast, but degrade

in accuracy with high evolutionary diver-
gence.

• Sequence-based methods (e.g. maximum
Parsimony and maximum likelihood) do
not degrade, but are computationally ex-

pensive.

• Parsimony does best if all branches are
short, so that large numbers of taxa may
be needed for accurate tree reconstruction
using Parsimony.

• Year-long Parsimony analyses (Rice et al.)
of large divergent datasets are infeasible
for most researchers.
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The Disk-Covering Method (DCM)

A divide-and-conquer approach based on the

idea of covering given sequence data with small

overlapping disks

• Each disk contains a small number of taxa.

• Taxa within a disk are very similar.

• Apply given base-method to subproblems.

• Use overlap to merge subtrees to obtain

final tree.
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The DCM Algorithm
• Input: distances and sequences
• Choose base-method (e.g. Parsimony or NJ)

• For a given threshold w:

– Compute threshold graph G

∗ Vertices are taxa

∗ Join two vertices if their distance ≤ threshold

– Compute triangulation G∗ of threshold
graph

∗ Produce perfect elimination scheme

∗ Makes the following step easy:

– Apply base-method to all maximal cliques
in G∗

– Merge trees guided by perfect elimina-
tion scheme

• Infer consensus of {Tw}.
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Merging Two Trees

Given trees on two overlapping sets of taxa,

e.g. {1, 2, 3, 4, 5, 6} and {1, 2, 3, 4, 7}.

To merge the two trees together, first trans-

form them (through edge contractions) so that

they induce the same subtrees on their shared

leaves and then combine them.
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Neighbor-Joining vs. DCM-NJ

False Positives

• 93 taxon tree

• maximum mutation probability p(e) = 0.48

• 10 experiments per point

• Greedy asymmetric median tree, i.e. consensus
over all trees {Tw}.
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Neighbor-Joining vs. DCM-NJ

False Negatives

• 93 taxon tree

• maximum mutation probability p(e) = 0.48

• 10 experiments per point

• Greedy asymmetric median tree, i.e. consensus
over all trees {Tw}.
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Neighbor-Joining vs. DCM-NJ

• 135 taxon tree

• maximum mutation probability p(e) = 0.64

• 4-6 experiments per point

• Greedy asymmetric median tree of a small subset
of {Tw}.
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Choosing the Threshold for DCM-NJ

Choice of threshold is ruled by two factors:

• The accuracy of NJ degrades on subprob-

lems with increasing threshold w.

• For small thresholds, the merger of sub-

problems is not uniquely defined.

• 135 taxon tree, p(e) = 0.64, sequence length 300
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Threshold and Merge Step

Let T be a model tree and d an estimated

distance matrix. A short quartet around an

internal edge e is a set of four taxa a, a′, b, b′

that lie in the four subtrees induced by e, of

minimal width.

Theorem If the threshold w is chosen large

enough such that every short quartet induces

a four-clique in G∗, then every merger is unique

and a DCM method will recover the model

tree T , if the base method is accurate on the

base problems.
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Sequence Lengths Required for Accuracy

The length of biological sequences obtainable

for phylogenetic analysis is bounded by a few

thousand base pairs, so the question how se-

quence length affects performance is critical.

The sequence lengths that suffice for accu-

racy of distance methods such as neighbor-

joining or the Buneman Tree grow exponen-

tially in the divergence of the model tree.

(Atteson 1997, Erdös et al. 1997)

For DCM-boosted distances methods we can

show:

For almost all trees, polylogarithmic

length suffices for accuracy with high

probability, and polynomial length suf-

fices for all trees with high probability.
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DCM vs. Short Quartet Method
P. Erdös, M. Steel, L. Székely and T. Warnow (1997)

introduced the Short Quartet Method (SQM), the

first method known to require only polylogarithmic

length sequences for complete accuracy with high prob-

ability. Drawback: SQM returns nothing, if complete

accuracy is unachievable.

• Average performance (5 experiments per

point) of the SQM compared with DCM-

Buneman, on a 35 taxon tree with maxi-

mum p(e) equal to 0.04.

• For each dataset, SQM returns either 0%

or 100% false negatives.

23

                             

                       Daniel Huson, 1998



Conclusion and Future Research

By reduction to small and closely related-datasets,

the DCM-method can substantially improve

the accuracy and/or time requirements of phy-

logenetic tree reconstruction methods for large

and divergent datasets.

Future research will focus on:

• a systematic study of the performance of DCM-NJ
on many different simulated datasets

• how to determine a good threshold for DCM-Parsimony

• investigating DCM versions of other methods

• application to some really large problems, e.g. the
500 taxon rbcL dataset

• studying different recursive variants

• applying DCM-methods to real biological data sets

• developing a public version of the software.
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