

Distance corrections on mosaic sequences

David Bryant

Daniel Huson Tobias Kloepper Kay Nieselt-Struwe

Copyright (c) 2008 Daniel Huson.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license can be found at http://www.gnu.org/copyleft/fdl.html

Phylogenetic analysis

- Sequence-based methods
 - Maximum parsimony
 - Maximum likelihood

- Distance-based methods
 - NJ, UPGMA ... trees
 - Split-decomposition & Neighbor-Net networks

Phylogenetics with distances

Aligned sequences

Distance transformation

Tree-building method

Distance matrix Tree

Network method

Danleletsworks

Distance corrections

Problem

Hidden mutations (e.g. $A \rightarrow C \rightarrow A$) mean that we can't directly observe the number of mutations between two sequences.

Solution

Assume the sequences evolve according to a Markov process and use probability theory to **estimate** the number of hidden mutations.

GTR "General time-reversible model" Daniel Huson, 2003

Correction formulas

- Most of the standard distance correction formulas can be derived directly from the GTR
- E.g., we obtain the Jukes-Cantor correction as:

$$D = -\frac{3}{4} \log \left(1 - \frac{4}{3} p \right)$$

Sequence evolution along one tree

We usually assume that sequences evolve on a fixed tree:

Standard distance corrections apply to suchasequences

Mosaic sequence evolution

"Mosaic sequences" evolve along different trees

What happens if we apply standard distance corrections to mosaic sequences? ...

® We are correcting according to an incorrect model! 2003

Mosaic sequence evolution

Can we safely apply standard distance corrections to mosaic sequences?

Trees: T_1 T_2 ... T_k Sequence proportions: q_1 q_2 q_k Number of mutations between two fixed sequences x and y: d_1 d_2 d_k

True distance between sequences x and y:

$$E[d] = \sum_{i} q_i d_i$$
 $Var[d] = \sum_{i} q_i (d_i - E[d])^2$

expected number of mutations Daniel Huson, 2003

Example

$$d_1 = 0.12$$
 $d_2 = 0.06$ $d_3 = 0.12$

True distance the sites $\times 0.12 + 31/36 \times 10.06 = 2/3 \times (0.12 - 0.1)^2 + 1/3 \times (0.06 - 0.1)^2 = 0.0008$

Main result

Given mosaic sequences. Apply standard correction.

E[d]-K· Var[d] ≤ corrected distance ≤ E[d]

· Corrected distance underestimates true distance.

$$\text{ If } \text{v(}K = \frac{1}{2} \frac{tr(\Pi Q^2)}{t_Q^2},$$

- $oldsymbol{\cdot Corr}$ Π equilibrium frequencies, distarwhere Q rate matrix, and
- Proo. r_Q mutation rate.)

Daniel Huson, 2003

Applications of this result

- 1) How does undetected recombination effect standard phylogenetic analysis?
- 2) Consequences for rate variation models?
- 3) Do network methods explicitly represent recombination?

1) Undetected recombination

Undetected recombination

Experiments suggest the effect is small:

Jukes-Cantor
Two trees

Distances

Kimura 2-p. Fivenitness, 2003

1) Undetected recombination

Undetected recombination

Experiments suggest the effect is small:

Jukes-Cantor
Two trees

Error

Kimura 2-p. Fivenitness, 2003

2) Rate variation models

Rate variation

Site-by-site rate variation

Different sites have different rates

2) Rate variation models

Rate variation

Edge-by-edge rate variation

Different sites have different rates on different edges

2) Rate variation models

Consistency under rate variation

- Distance and max. likelihood methods can be "inconsistent" when rates vary across sites [J. Chang 1995]
- Our result implies: If

(Recall: Methodis called consistent", if it converges to the true tree, as the length of the length of the length of the length by corrected distances is consistent.

(ϵ =expected number of mutations on shortest branch)

Networks

Trees and splits

Edge *e* corresponds to "split" $\{t_1, t_2, t_6, t_7, t_8\}$ vs $\{t_3, t_4, t_5\}$

Splits and splits graphs

Cut-set of parallel edges defines "split" {A,B} vs rest

Mosaic evolution and splits

Trees: T_1 T_2 ... T_k

Splits sets: Σ_1 Σ_2 ... Σ_k

Seq. proportions: q_1 q_2 q_k

$$d(x,y) = \sum_{i=1}^{k} q_i \left(\sum_{A|B \in \Sigma_i} b_i (A \mid B) \delta_{A|B}(x,y) \right)$$

$$= \sum_{A|B} \overline{b}(A \mid B) \delta_{A|B}(x,y)$$

where $b_i(A|B)$ is the branch length of A|B in tree T_i , and $\delta_{A|B}(x,y)=1$, if A|B separates x,y, and 0, else Daniel Huson, 2003

Mosaic evolution and splits

Our results imply:

- A splits graph G estimates the set of splits $\Sigma = \bigcup \Sigma_i$ of the trees $T_1,...,T_k$
- The lengths of the edges in G estimate the corresponding branch lengths, weighted by the frequencies

Mosaic evolution and splits

- The split decomposition method [Bandelt & Dress 1992] is consistent when all splits are "weakly compatible"
- The Neighbor-Net method [Bryant & Moulton 2002]
 is consistent when all splits are "circular"
 - ⇒ both methods will reconstruct the generating splits and branch lengths, given long enough sequences

Example

Two trees

Sequence proportions

2/3 Split decomposition

1/3

Splits graph containing the splits of both trees

Summary

- We have established a general result for distance corrections on mosaic sequences
- The effect of using standard distance corrections may not be too bad when the variance is small
- Splits graphs estimate the generating splits and their branch lengths