Segment Match Refinement and Applications

Aaron L. Halpern,
Daniel H. Huson*
& Knut Reinert

CELERA

* Now at: Center for Bioinformatics Tübingen

Daniel Huson, 2002
Overview

- Motivation: comparison of HGP and Celera assemblies of human
- Problem: one-to-one matching of sequences
- Solution 1: A greedy heuristic
- Solution 2: Optimal refinement algorithm
- Other applications
- Comparison of solutions
Two assemblies of human
Comparison of two assemblies

- What do they have in common?
 - Compute one-to-one matching of sequence
- How do they differ?
 - Determine how much of the remaining difference is unique,
 - unique-repetitive or
 - unique-under-collapsed sequence
Comparison of HGP and Celera assemblies
The Matched Sequence Problem

Given sequences A and B and a set Σ of segment matches between them. The Matched Sequence Problem is to compute a set of non-intersecting matches Σ' that are all submatches of Σ, such that the amount of sequence covered by the matched segments is maximized.
Greedy one-to-one matching

- Given a set Σ of segment matches between two sequences A and B:

- A one-to-one matching of sequence can be obtained by greedily selecting a set of disjoint matches using a priority queue.
Greedy matching with trimming

- Given a set Σ of segment matches between two sequences A and B:
- Trim matches that partially overlap with already selected ones and re-insert into priority queue
How well does greedy selection with trimming work?

- Goal: obtain a set of non-overlapping matches that cover as much of both sequences as possible
- Greedy selection runs fast and obtains results that seem reasonable...
- BUT it could missing up to half of the attainable coverage:

This alternative covers nearly twice as much sequence
How about an optimal matching?

- Can an optimal set of non-overlapping matches be computed efficiently?
- How much better is an optimal solution than the one obtained by the greedy+trimming approach?
Sequence matching vs. graph matchings

- Given two sequences A and B and a set Σ of segment matches
- Assume that Σ is resolved, i.e. that the projections of any two matches onto each sequence are either disjoint or identical
- Then, the Sequence Matching Problem can be reduced to a weighted matching problem for a bipartite graph
The match graph

Daniel Huson, 2002
The match graph

Σ

Heaviest matching in bipartite graph gives optimal sequence matching

Daniel Huson, 2002
The resolved refinement

• Given a set Σ of matches between A and B.
• To be able to apply the bipartite graph maximal matching algorithm, we need to refine all overlapping matches so as to obtain a resolved refinement Σ' of Σ.
Resolved segment matches

- Given a set Σ of segment matches between two sequences A and B

- Want to determine a resolved subset Σ' of Σ in which the projections of any two matches onto each sequence are either disjoint or identical.
In other words...

- Given many overlapping segment matches produced by programs such as MUMer or BLAST
- Determine a resolved set of matches that do not overlap improperly