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Enumerating Tilings

Theorem Given a 2d symmetry
group and k 2N. All
tile-k-transitive periodic tilings
with group  can be recursively
enumerated using the algorithms
FUNDAMENTAL, SPLIT and
GLUE.

SPLIT: Delone, Dolibilin & Stogrin[78]
GLUE: L. Zamorzaeva[84]
For Delaney symbols - Huson[93]
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The Form of an Orbifold

Two orbifold symbols O and Of
are of the same form, if there
exists a permutation A of
N n f0,1g, such that he(O) = O

Example: If h exchanges 3 and 4,
then

he(ZZ245t633) = ZZ235 t 644.
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Main Result

For an orbifold O, let T(O)
denote the set of all periodic
tilings whose symmetry group

correspond to O.

Theorem If O and O! are of the
same form, then there exists a
one—one-correpondence between
T(O) and T(OY, unless one of
the orbifolds is p22, tp22, or
2tp, withp 7% 2.

(Balke & H., to appear in: Geom. Ded.)

Given the form of an orbifold, all
corresponding periodic tilings can be
systematically enumerated.
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Ribbon Symmetry Groups

Setn = 1;

t22n 122 1 pmm?2
2tn 2t 1 pma?2
22n 22 1 pl112
tnn t11 pm11
nt 1t pim1
no 10 plat
nn 11 p111
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Classifying Ribbon Tilings

T heorem T he classification of

tile-k-transitive tilings of the

ribbon R (or pinched-ribbon pR)
can be derived from the

classification of all longitudal
tile-k-transitive tilings of the

sphere.

Form | Orbifold | Group | Tile-trans. | Tile-2-trans. | Tile-3-t
R PR R PR R
2tn 2t 1 pma?2 7 2 | 119 22 | 2326
t22n t22 1 pmm?2 4 2 90 42 | 2189
tnn t11 pmii 2 1 23 10 406
22n 22 1 p112 5 1 73 14 | 1150
nt 1t pimi 2 0 23 3 271
nn 11 p111 1 0 7 1 57
n 0 10 plat 3 0 23 1 251
Total 24 b | 300 93 | 66350
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Identifying the
Crystallographic Group from a
Triangulated 3D Orbifold

Examples:
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Orbifolds

A closed diP. n-orbifold Q is a
HausdorP space X™, together
with (compatible) modellings of
neighborhoods of each point in
X™ on R"/(pnite subgroup of O(n)),
where the point corresponds to
the equivalence class of the
origin. The singular set Sg of Q
consists of those points for which
the pnite group is trivial

(Dunbar 88).

Let X be a simply-connected

metric space and G Isom(X),

with compact fundamental domain.

Then the quotient G nX gives
rise to an orbifold.
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3D Euclidean Space Groups

There are 230 types of 3D
crystallographic space groups,
l.e. 219 isomorphism types, and
11 pairs that only diPer in their

left- or right-handedness

(Federov 18907?).

Problem Given the triangulation
of a 3D orbifold @), in terms of a
Delaney symbol (D, m), assumed
to be euclidean.
How to determine the
crystallographic type of the
associated group?
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The Orbifold Graph

Given the triangulation of a 3D
orbifold @ in terms of a Delaney
symbol (D,m). The orbifold
graph describes the singular set
So of @ combinatorially, i.e.
without the embedding. It can
be easily computed from (D,m).

Examples:
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Results

Given a list of Delaney symbols,

one of each of the 219 types of

groups, we obtain the following
results:

Z The 219 types of 3D crystallo-
graphic groups give rise to 189
diPerent orbifold graphs (tak-
ing orientability into account)

Z 175 groups can be identiped
solely by their orbifold graph

Z The remaining 44 groups can
all be destinguished using
\abelian invariants" (0. Del-
gado)
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